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p = 0.5 ( sphere) 

FIG. 3. Variation of Sk/S, with the temperature ratio Tw/TO. 

the function F for 1) = 0” (stagnation point) depends nearly 
linearly on M,. F can thus be approximated by the follow- 
ing expression which is also shown in Fig. 2 for the Mach 

f, 

number range 2 < M, < 7. For 

H=O”: F=0.48+@774.M,. 
(9) 2. 

In the limiting case for M, -+ co the function F at the 
stagnation point is given by [6] : 

F =08931.M,. (10) 3. 

Using the expression (9) equation (8) can be rewritten for 
the stagnation point heat transfer for 2 < Mm < 7 4. 

Nu, 
- -;(Pp ; o’5(0.48+0.774.M,). 

(Re,)0’5 %, 0 
(11) 5, 

The pressure gradient parameter /I for the stagnation 
region is equal to 1.0 for a cylinder and @5 for a sphere 
using Mangler’s [5] transformation [4]. 6. 

The ratio Sk/S, is calculated using the analysis of [l] for 
/J = 0.5 and 1.0. The results are shown in Fig. 3 plotted vs the 
temperature ratio T,/T,. 
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NOMENCLATURE 

parameter in equation (1) [T 
constants in equation (12); 
constants in equation (12); 
constants in equation (12); 
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C, 
CO> 
C,> 
d, 
D, 
h “9 

concentration of solute [ML-‘]; 
inlet concentration [MLm3]; 
interfacial concentration [ML- 3]; 
film thickness [L]; 
diffusion coefficient [L’T- ‘1; 
constants defined by equation (18); 
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local mass-transfer coefficient [LT-‘I; 
mass flux [ML-z~-*I; 

local Sherwood number = y ; 

axial velocity [LT-‘1; 
surface velocity in film [LT~.‘]; 
axial coordinate [L]; 

dimensionless axial coordinate = E ; 

dimensionless axial coordinate = &: 
transverse coordinate measured from the 
interface EL]; 

dimensionless transverse coordinate = y 

JO 
;. 

Greek symbols 

8, dimensionless eddy diffusivity parameter = 5; 

8. eddy diffusivity of mass [L’T- ‘1; 

rl? pseudo-similarity coordinate = y ; 
2Jx 

0, 
c-c 

dimensionless concentration = L. 

8 
C,-C,’ 

n, dimensionless functions defined by equations (7) 
and (8); 

$9 dimensionless group = Sh zx 
Ji > 8’ 

Mathematical functions 

erf, error function, erf z = - ;a : e-“dt; 
s 

ik erfc, kth repeated integral of the error function: 

i’erfc(z) = i*-‘erfc(t)dt, (k = 0,1,2...), 

i-‘erfc(2) = lemfz; 
Ja 

hj, Kronecker delta function, S, = 0, i f j; 
6, = 1, i =j. 

LIQUID-PHASE-CONTROLLED mass transfer into a turbulent 
liquid film is of importance in quite afew process applica- 
tions as well as in the reaeration of natural streams. 
Several models have been used for analyzing turbulent 
transport in the liquid phase. This note is concerned with 
the eddy diffusivity model which, as Sandal1 [l] points out 
in a recent communication, has been used for describing 
mass transfer in the vicinity of a free surface by quite a 
few authors (Levich [2], King [3], Davies [4]), The experi- 
ments of Lamourelle and Sandal1 [S] indicate that this eddy 
diffusivity can he described by 

c = ays (1) 
where y is the distance measured from the free surface. 

For short contact times, the concentration distribution is 
confined to a region near the free surface, and hence, the usual 
penetration theory assumptions can be made to simplify the 
convective diffusion equation. Sandall, in [l], solved this 
equation using a finite difference technique. He also calcu- 
lated a two-term approximation of the extended penetration 
theory solution using numerical means. The purpose of this 
note is to indicate that this latter solution can be written in 
terms of elementary functions which makes it possible not 
only to calculate it to greater accuracy with ease but also 
permits a better understanding of the nature of the solution 
itself. 

The concentration distribution of solute in the liquid film 
will satisfy the convective diffusion equation, 

The boundary conditions on C(x, y) are 

C(0, Y) = co (W 

C(x, 0) = c, (W 

g(x,d)=o. (3c) 

Confining our attention to the inlet region and making the 
usual assumptions of the penetration theory, equations (2) 
and (3) may be written in dimensionless form as 

(4) 

6(0, Y) = ejx, ca) = 1 (5a) 
6(X, 0) = 0. (5’4 

Upon transforming equation (4) to the (X,, ~7) system and 
writing a solution of the form 

0 = $ @II (9)X (6) 

the functions 0, (q) will satisfy 

&+2t7e:,-4&= -(~28.“_,+2~@;_,), (n=0,1,2...) (7) 

with the convention that 6_ r E 0. The boundary conditions 
on 0, (q) may be written from equations (5) and (6) as 

f?“(O) = 0 

e.(m) = &J I 
(n=0,1,2...). @a) 

(8b) 

The solutions ofequations (7) and (8) for n = 0.1 and 2 are 

B0 = erfq (9) 

In general, the solution of equation (7) may be written as 

0, = A.iZ”erfc(~)+B,i2”erfc(-rf) 
zn 

+ C c..~P-le-“. (12) 
L=l 

Application of the boundary conditions on B*(n) shows that 
for n # 0, A. = B. z 0. The coefficients c,,* are given by the 
following recursive relations. 

1 
%2. = 3nC._1,2”_2 (13) 

c,,~ =2~[k(2k+l)c.,~+,+k(2k-l)c,-,, 

-(4k-3)c.-l,~-*+2c”-,,R-Z 12 
(k=1,2,3...(2n-i)), (n=2,3,4...) (14) 

withtheunderstandingthatc,-1._,~c._l,o=c._1.2n_L=O 
in equation (14). 

If the mass-transfer coefficient k, is defined by 

the Sherwood number Sh for the inlet region may be written 
as 

Sh=B . (16) 
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Table 1. The coefficients, h, 

t1 hn 

1 0.5 
2 -0.125 
3 0.09583 
4 -0.11525 
5 0.18469 
6 -0.36998 

It is convenient to report the results in terms of the 
dimensionless group, $. 

$(F) = Sh (17) 

where 

and 

/I. reveals that equation (17) is practically useful only for 
x < I. 

Ii, corresponds to the classical penetration theory result 
while hl is the equivalent of the additional coefficient calcu- 
lated by Sandal1 [1] using numerical methods (he actually 
calculated Zh,/Jn). Sandal1 neglected the higher order terms 
and adjusted Ii, to fit his finite difference results. 

Equation (17). when truncated at the Nth term. reads 

$(X) = i h,X” (19) 
“=O 

Table 2 compares values of $ calculated for various X values 
from equation (19) for N = 1,2,4 and 6 with the correspond- 
ing values calculated from the linear fit to the finite difference 
results proposed by Sandal1 [ 11. One may observe from the 
table that equation (19) with N = 2 would probably be 

Table 2. Values of $ calculated from equation (19) compared with $ calculated using 
equation (12) from [l] 

X 

0.01 
0.05 
0.1 
0.5 
0.8 
I.0 

$ [from equation (19) of this work] * 
[from equation (12) 

N=l N=2 N=4 N=6 of [ll) 

1.005 1.00499 1.00499 1.00499 1.00316 
1.025 1.02469 1.02470 1.02470 I.01717 
1.050 1.04875 1.04883 1.04884 1.03467 
1.250 1.21875 I.22353 1.22352 1.17469 
1.400 1.32000 1.32186 I.28539 I.2797 1 
1.500 I.37500 1.35558 I.17028 1.34972 

ho= 1 (lga) 

h,=;c,,i, (n= 1,2,3...). (18b) 

The coefficients h, are independent of the parameter p as are 
the c.,~ and hence can be calculated once and for all. The 
values of h. for n = 1 to 6 are listed in Table 1. Caution 
should be exercised in using equation(l7) since it is an 
asymptotic expansion, and therefore, inclusion of more terms 
will not always improve the accuracy of the result. In fact, the 
truncation error would be of the same order of magnitude 
as the last term included and for best results, summation 
should be terminated at the point when successive terms 
start increasinginmagnitude. Examination ofthe coefficients 

sufficient to bring the extended penetration theory results 
close enough to the finite difference calculations of Sandal1 
in the region of validity of the former solution. 
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